
Create and manage jobs

Submitting a job

To submit your job to Anyscale, use the Python SDK or CLI and pass in any additional options or

configurations for the job.

By default, Anyscale uses your workspace or cloud to provision a cluster to run your job. You can

define a custom cluster through a compute config or specify an existing cluster.

Once submitted, Anyscale runs the job as specified in the entrypoint command, which is typically

a Ray Job. If the run doesn't succeed, the job restarts using the same entrypoint up to the number

of max_retries .

CLI Python SDK

With the CLI, you can either specify an existing compute config with --compute-

config=COMPUTE_CONFIG_NAME or define a new one in a job YAML.

For more information on submitting jobs with the CLI, see the reference docs.

TIP

For large-scale, compute-intensive jobs, avoid scheduling Ray tasks onto the head node

because it manages cluster-level orchestration. To do that, set the CPU resource on the

head node to 0 in your compute config.

anyscale job submit --name=my-job \
 --working-dir=. --max-retries=5 \
 --image-uri="anyscale/image/IMAGE_NAME:VERSION" \
 --compute-config=COMPUTE_CONFIG_NAME \
 -- python main.py

Ask AI

2/12/25, 9:48 AM Create and manage jobs | Anyscale Docs

https://docs.anyscale.com/platform/jobs/manage-jobs 1/5

https://docs.anyscale.com/reference/compute-config-api
https://docs.ray.io/en/latest/cluster/running-applications/job-submission/index.html
https://docs.anyscale.com/reference/job-api#anyscale-job-submit
https://docs.ray.io/en/latest/cluster/key-concepts.html#head-node
https://docs.anyscale.com/reference/compute-config-api

Defining a job

With the CLI, you can define jobs in a YAML file and submit them by referencing the YAML:

For an example of defining a job in a YAML, see the reference docs.

Waiting on a job

You can block CLI and SDK commands until a job enters a specified state. By default,

JobState.SUCCEEDED is used. See all available states in the reference docs.

CLI Python SDK

When you submit a job, you can specify --wait , which waits for the job to succeed or exits if the

job fails.

For more information on submitting jobs with the CLI, see the reference docs.

Terminating a job

You can terminate a job from the Job page or using the CLI/SDK:

CLI Python SDK

anyscale job submit --config-file config.yaml

anyscale job wait -n job-wait

anyscale job submit -n job-wait --wait -- sleep 30

2/12/25, 9:48 AM Create and manage jobs | Anyscale Docs

https://docs.anyscale.com/platform/jobs/manage-jobs 2/5

https://docs.anyscale.com/reference/job-api#examples
https://docs.anyscale.com/reference/job-api#jobstate
https://docs.anyscale.com/reference/job-api#anyscale-job-wait

For more information on terminating jobs with the CLI, see the reference docs.

Archiving a job

Archiving jobs hide them from the job list page, but you can still access them through the CLI and

SDK. The cluster associated with an archived job is archived automatically.

To be archived, jobs must be in a terminal state. You must have created the job or be an

organization admin to archive the job.

You can archive jobs in Anyscale console or through the CLI/SDK:

CLI Python SDK

For more information on archiving jobs with the CLI, see the reference docs.

Managing dependencies

When developing Anyscale jobs, you may need to include additional Python packages or system-

level dependencies. There are several ways to manage these dependencies:

Using a requirements.txt file

The simplest way to manage Python package dependencies is by using a requirements.txt file.

1. Create a requirements.txt file in your project directory:

anyscale job terminate --id 'prodjob_...'

anyscale job archive --id 'prodjob_...'

emoji==2.12.1
numpy==1.21.0

2/12/25, 9:48 AM Create and manage jobs | Anyscale Docs

https://docs.anyscale.com/platform/jobs/manage-jobs 3/5

https://docs.anyscale.com/reference/job-api#anyscale-job-terminate
https://docs.anyscale.com/reference/job-api#anyscale-job-archive

2. When submitting your job, include the -r or --requirements flag:

CLI Python SDK

This method works well for straightforward Python package dependencies. Anyscale installs these

packages in the job's environment before running your code.

Using a custom container

For more complex dependency management, including system-level packages or specific

environment configurations, use a custom container:

1. Create a Dockerfile :

2. Build and submit the job with the custom container:

CLI Python SDK

This method gives you full control over the job's environment, allowing you to install both system-

level and Python packages.

anyscale job submit --config-file job.yaml -r ./requirements.txt

FROM anyscale/ray:2.10.0-py310

Install system dependencies if needed
RUN apt-get update && apt-get install -y <your-system-packages>

Install Python dependencies
COPY requirements.txt /tmp/
RUN pip install -r /tmp/requirements.txt

anyscale job submit --config-file job.yaml --containerfile Dockerfile

2/12/25, 9:48 AM Create and manage jobs | Anyscale Docs

https://docs.anyscale.com/platform/jobs/manage-jobs 4/5

Using pre-built custom images

For frequently used environments, you can build and reuse custom images:

1. Build the image:

CLI Python SDK

2. Use the built image in your job submission:

CLI Python SDK

This approach is efficient for teams working on multiple jobs that share the same dependencies.

anyscale image build -n my-custom-image --containerfile Dockerfile

anyscale job submit --config-file job.yaml --image-uri anyscale/image/my-
custom-image:1

2/12/25, 9:48 AM Create and manage jobs | Anyscale Docs

https://docs.anyscale.com/platform/jobs/manage-jobs 5/5

